Stochastic Dynamic Buckling Analysis of Cylindrical Shell Structures Based on Isogeometric Analysis

Author:

Yu Qingqing12,Liu Xiaojun1,Xue Fei2,Guan Zhenyu3,Guo Yujie34ORCID,Zeng Jianjiang3

Affiliation:

1. School of Mechanical Engineering, Southeast University, Nanjing 211189, China

2. Nanjing Research Institute of Electronics Technology, Nanjing 210039, China

3. College of Aerospace Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

4. National Key Laboratory of Strength and Structural Integrity, Xi’an 710065, China

Abstract

In this paper, we extend our previous work on the dynamic buckling analysis of isogeometric shell structures to the stochastic situation where an isogeometric deterministic dynamic buckling analysis method is combined with spectral-based stochastic modeling of geometric imperfections. To be specific, a modified Generalized-α time integration scheme combined with a nonlinear isogeometric Kirchhoff–Love shell element is used to simulate the buckling and post-buckling problems of cylindrical shell structures. Additionally, geometric imperfections are constructed based on NURBS surface fitting, which can be naturally incorporated into the isogeometric analysis framework due to its seamless CAD/CAE integration feature. For stochastic analysis, the method of separation is adopted to model the stochastic geometric imperfections of cylindrical shells based on a set of measurements. We tested the accuracy and convergence properties of the proposed method with a cylindrical shell example, where measured geometric imperfections were incorporated. The ABAQUS reference solutions are also presented to demonstrate the superiority of the inherited smooth and high-order continuous properties of the isogeometric approach. For stochastic dynamic buckling analysis, we evaluated the buckling load variability and reliability functions of the cylindrical shell with 500 samples generated based on seven nominally identical shells reported in the geometric imperfection data bank. It is noted that the buckling load variability in the cylindrical shell obtained with static nonlinear analysis is also presented to show the differences between dynamic and static buckling analysis.

Funder

NATIONAL KEY LABORATORY OF STRENGTH AND STRUCTURAL INTEGRITY

SCIENCE AND TECHNOLOGY MAJOR SPECIAL PROJECT OF SHANXI PROVINCE

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3