On Extended Beta Function and Related Inequalities

Author:

Parmar Rakesh K.1ORCID,Pogány Tibor K.23ORCID,Teofanov Ljiljana4ORCID

Affiliation:

1. Department of Mathematics, Ramanujan School of Mathematical Sciences, Pondicherry University, Puducherry 605014, India

2. Institute of Applied Mathematics, John von Neumann Faculty of Informatics, Óbuda University, 1034 Budapest, Hungary

3. Faculty of Maritime Studies, University of Rijeka, 51000 Rijeka, Croatia

4. Faculty of Technical Sciences, University of Novi Sad, 21000 Novi Sad, Serbia

Abstract

In this article, we consider a unified generalized version of extended Euler’s Beta function’s integral form a involving Macdonald function in the kernel. Moreover, we establish functional upper and lower bounds for this extended Beta function. Here, we consider the most general case of the four-parameter Macdonald function Kν+12pt−λ+q(1−t)−μ when λ≠μ in the argument of the kernel. We prove related bounding inequalities, simultaneously complementing the recent results by Parmar and Pogány in which the extended Beta function case λ=μ is resolved. The main mathematical tools are integral representations and fixed-point iterations that are used for obtaining the stationary points of the argument of the Macdonald kernel function Kν+12.

Publisher

MDPI AG

Reference30 articles.

1. De progressionibus transcendentibus sen quaroum termini generales algebrare dari nequeunt;Euler;Comm. Acad. Sci. Petropolitanae,1730

2. Generalized incomplete gamma functions with applications;Chaudhry;J. Comput. Appl. Math.,1994

3. On the decomposition of generalized incomplete gamma functions with applications of Fourier transforms;Chaudhry;J. Comput. Appl. Math.,1995

4. Extended incomplete gamma functions with applications;Chaudhry;J. Math. Anal. Appl.,2002

5. Chaudhry, M.A., and Zubair, S.M. (2002). On a Class of Incomplete Gamma Functions with Applications, CRC Press (Chapman and Hall).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3