Multi-Step Hourly Power Consumption Forecasting in a Healthcare Building with Recurrent Neural Networks and Empirical Mode Decomposition

Author:

Fernández-Martínez DanielORCID,Jaramillo-Morán Miguel A.ORCID

Abstract

Short-term forecasting of electric energy consumption has become a critical issue for companies selling and buying electricity because of the fluctuating and rising trend of its price. Forecasting tools based on Artificial Intelligence have proved to provide accurate and reliable prediction, especially Neural Networks, which have been widely used and have become one of the preferred ones. In this work, two of them, Long Short-Term Memories and Gated Recurrent Units, have been used along with a preprocessing algorithm, the Empirical Mode Decomposition, to make up a hybrid model to predict the following 24 hourly consumptions (a whole day ahead) of a hospital. Two different datasets have been used to forecast them: a univariate one in which only consumptions are used and a multivariate one in which other three variables (reactive consumption, temperature, and humidity) have been also used. The results achieved show that the best performances were obtained with the multivariate dataset. In this scenario, the hybrid models (neural network with preprocessing) clearly outperformed the simple ones (only the neural network). Both neural models provided similar performances in all cases. The best results (Mean Absolute Percentage Error: 3.51% and Root Mean Square Error: 55.06) were obtained with the Long Short-Term Memory with preprocessing with the multivariate dataset.

Funder

Government of Extremadura

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3