Developing a Sustainable Management Strategy for Quantitative Estimation of Optimum Nitrogen Fertilizer Recommendation Rates for Maize in Northeast China

Author:

Jiang Wenting,Xing Yingying,Wang Xiukang,Liu Xiaohu,Cui Zhigang

Abstract

Excessive application of chemical fertilizers has caused a series of environmental problems, including environmental pollution. Quantitative estimation of a sustainable fertilizer recommendation rate is paramount for formulating fertilizer management strategies to improve productivity of low-yield regions and to prevent environmental damage. In this study, the database was drawn from 31 experimental sites in the main maize production region of Northeast China, during the period 2009 to 2013, to study the relationships between yield factors and nitrogen application rates, and to explore sustainable nitrogen (N) fertilizer recommendation rates based on analysis using the fertilizer response model. The fertilizer response model method is a technique that can provide effective performance predictions for the estimation of the optimum crop balanced fertilizer rates in varied agricultural regions. Results revealed that the average grain yield in treatment of N180 (the amount of nitrogen application rate was 90 kg ha −1) was highest, and the yield increase rate ranged from 4.77% to 58.53%, with an average of 25.89%. The sequence of grain yields in each treatment receiving N fertilizer management from high to low was: N180 > N270 > N90 in all the regions. The agronomic efficiency for applied N in N90, N180, N270 treatments was 11.8, 10.8, and 4.6 kg kg −1, respectively. The average optimum N fertilizer recommendation rate in Liaoning province was 180.4 kg ha −1, and the predicted optimum yield ranged between 7908.7 and 12,153.9 kg ha −1, with an average of 9699.1 kg ha −1. The mean optimum N fertilizer recommendation rate in western (WL), central and southern (SCL), eastern (EL), and northern (NL) of Liaoning province were 184.2, 177.2, 163.5, and 192.5 kg ha −1, and the average predicted optimum yields were 8785.3, 10,630.3, 9347, and 9942.4 kg ha −1. This study analyzed the spatial distribution of optimum fertilizer recommendation rates and the corresponding theoretical yield based on a large database, which helped to develop effective and environment-friendly N management strategies for sustainable production systems.

Funder

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3