Temporal and Spatial Variability of Carbon Emission Intensity of Urban Residential Buildings: Testing the Effect of Economics and Geographic Location in China

Author:

Shi QingweiORCID,Gao Jingxin,Wang Xia,Ren Hong,Cai Weiguang,Wei Haifeng

Abstract

The role of urban residential buildings (URBs) in the carbon reduction goal of China is becoming increasingly important because of the rising energy consumption and carbon emission of such buildings in the region. Considering the increasing spatial interaction of the carbon emission of URBs (URBCE) in the region, this study investigates the influence of climate and economic factors on the URBCE in North and South China. First, the URBCE is calculated by using a decomposition energy balance table based on the carbon emission coefficient of electric and thermal power, thereby improving the estimation of the basic data of URBCE. Second, the influence of economic and climatic factors on the URBCE intensity in 30 provinces of China is explored by using a spatial econometric model. Results show that the URBCE intensity in China had a spatial autocorrelation from 2000 to 2016. Climatic and economic factors have great differences in the degree and direction of influencing the URBCE intensity in the country. Formulating emission reduction policies for climate or economic zones is more scientific and effective than developing national policies. Among these factors, urbanization rate, climate, and GDP per capita have a significant positive impact on the URBCE intensity in the region, whereas other factors have varying degrees of negative impact. In addition, climate, consumption level, and building area have significant spatial spillover effects on URBCE intensity, whereas other factors do not pass the significance test. Relevant conclusions should be given special attention by policymakers.

Funder

Fundamental Research Funds for the Central Universities

Chinese National Funding of Social Sciences

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3