Development and Test of a Novel Electronic Radiator Thermostat with a Return Temperature Limiting Function

Author:

Tunzi MicheleORCID,Skaarup Østergaard Dorte,Svendsen SvendORCID

Abstract

Automated hydronic balancing in space heating systems is crucial for the fourth-generation district heating transition. The current manual balancing requires labor- and time-consuming activities. This article presents the field results of an innovative electronic radiator thermostat tested on two Danish multi-family buildings. The prototypes had an additional return temperature sensor on each radiator and an algorithm was used to accurately control valve opening to ensure automated hydronic balancing. The results highlighted that the new thermostat performed as expected and helped secure the cooling of district heating temperatures —defined as the difference between supply and return temperature—4–12 °C higher during the test compared to results obtained in 2020, when the prototypes were replaced with state-of-the-art thermostats in the first building. The measurements from the other building illustrated how only two uncontrolled radiators out of 175 could contaminate the overall return temperature. The remote connection of the thermostats helped pinpoint the faults in the heating system, although the end-users were not experiencing any discomfort, and secure, after fixing the problems, a return temperature of 35 °C. Future designs may consider integrating a safety functionality to close the valve or limit the flow in case of damage or malfunction to avoid a few radiators compromising the low-temperature operation of an entire building before the cause of the problem has been identified.

Funder

Danish Energy Agency

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Reference26 articles.

1. European Commission An EU Strategy on Heating and Coolinghttps://ec.europa.eu/energy/en/topics/energy-efficiency/heating-and-cooling

2. Forging a climate-resilient Europe-the new EU Strategy on Adaptation to Climate Change;Eur. Comm.,2021

3. Low-Temperature District Heating Implementation Guidebook;Averfalk,2021

4. 4th Generation District Heating (4GDH)

5. The status of 4th generation district heating: Research and results

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3