A Review of Modelling of the FCC Unit–Part I: The Riser

Author:

Selalame Thabang W.,Patel Raj,Mujtaba Iqbal M.ORCID,John Yakubu M.ORCID

Abstract

Heavy petroleum industries, including the fluid catalytic cracking (FCC) unit, are useful for producing fuels but they are among some of the biggest contributors to global greenhouse gas (GHG) emissions. The recent global push for mitigation efforts against climate change has resulted in increased legislation that affects the operations and future of these industries. In terms of the FCC unit, on the riser side, more legislation is pushing towards them switching from petroleum-driven energy sources to more renewable sources such as solar and wind, which threatens the profitability of the unit. On the regenerator side, there is more legislation aimed at reducing emissions of GHGs from such units. As a result, it is more important than ever to develop models that are accurate and reliable, that will help optimise the unit for maximisation of profits under new regulations and changing trends, and that predict emissions of various GHGs to keep up with new reporting guidelines. This article, split over two parts, reviews traditional modelling methodologies used in modelling and simulation of the FCC unit. In Part I, hydrodynamics and kinetics of the riser are discussed in terms of experimental data and modelling approaches. A brief review of the FCC feed is undertaken in terms of characterisations and cracking reaction chemistry, and how these factors have affected modelling approaches. A brief overview of how vaporisation and catalyst deactivation are addressed in the FCC modelling literature is also undertaken. Modelling of constitutive parts that are important to the FCC riser unit such as gas-solid cyclones, disengaging and stripping vessels, is also considered. This review then identifies areas where current models for the riser can be improved for the future. In Part II, a similar review is presented for the FCC regenerator system.

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3