Abstract
In this article, the concept of a 22-kW microwave-powered unmanned aerial vehicle is presented. Its system architecture is analyzed and modeled for wirelessly transferring microwave power to the flying UAVs. The microwave system transmitting power at a 35 GHz frequency was found to be suitable for low-cost and compact architectures. The size of the transmitting and receiving systems are optimized to 108 m2 and 90 m2, respectively. A linearly polarized 4 × 2 rectangular microstrip patch antenna array has been designed and simulated to obtain a high gain, high directivity, and high efficiency in order to satisfy the power transfer requirements. The numerically simulated gain, directivity, and efficiency of the proposed patch antenna array are 13.4 dBi, 14 dBi, and 85%, respectively. Finally, a rectifying system (rectenna) is optimized using the Agilent advanced design system (ADS) software as a microwave power receiving system. The proposed rectenna at the core of the system has an efficiency profile of more than 80% for an RF input power range of 9 to 18 dBm. Moreover, the RF-to-DC conversion efficiency and DC output voltage of the proposed rectenna are 80% and 3.5 V, respectively, for a 10 dBm input power at 35 GHz with a load of 1500 Ω.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献