Abstract
Multi-microgrids have gained interest in academics and industry in recent years. Multi-microgrid (MG) allows the integration of different distributed energy resources (DERs), including intermittent renewables and controllable local generators, and provides a more flexible, reliable, and efficient power grid. This research formulates and proposes a solution for finding optimal location and operation of mobile energy storage (MES) in multi-MG power distribution systems (PDS) with different resources during extreme events to maximize system resiliency. For this purpose, a multi-stage event-based system resiliency index is defined and the impact of the Internet of things (IoT) application in MES operation in multi-MG systems is investigated. Moreover, the demand and price uncertainty impact on multi-MG operational performance indices is presented. This research uses a popular PG & E 69-bus multi-MG power distribution network for simulation and case studies. A new hybrid PSO-TS optimization algorithm is constructed for the simulations to better understand the contributions of MES units and different DERs and IoT on the operational aspects of a multi-MG system. The results obtained from the simulations illustrate that optimal operation of MES and other energy resources, along with the corresponding energy sharing strategies, significantly improves the distribution system operational performance.
Subject
Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献