Self-Balancing Supercapacitor Energy Storage System Based on a Modular Multilevel Converter

Author:

Hernandez Fernando DavalosORCID,Samanbakhsh RahimORCID,Ibanez Federico MartinORCID,Martin Fernando

Abstract

Energy Storage Systems (ESS) are an attractive solution in environments with a high amount of renewable energy sources, as they can improve the power quality in such places and if required, can extend the integration of more renewable sources of energy. If a large amount of power is needed, then supercapacitors are viable energy storage devices due to their specific power, allowing response times that are in the range of milliseconds to seconds. This paper details the design of an ESS that is based on a modular multilevel converter (MMC) with bidirectional power flow, which reduces the number of cascaded stages and allows the supercapacitors SCs to be connected to the grid to perform high-power transfers. A traditional ESS has four main stages or subsystems: the energy storage device, the balancing system, and the DC/DC and DC/AC converters. The proposed ESS can perform all of those functions in a single circuit by adopting an MMC topology, as each submodule (SM) can self-balance during energy injection or grid absorption. This article analyses the structure in both power flow directions and in the control loops and presents a prototype that is used to validate the design.

Funder

The Ministry of Education and Science of Russian Federation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimal number of supercapacitors per submodule in the energy storage system based on a modular multilevel converter with embedded balance control;International Journal of Electrical Power & Energy Systems;2024-08

2. A 3-Phase Supercapacitor Based Single-Source MLI with Self-Voltage Balancing and Boosting Ability;2023 IEEE International Conference on Applied Superconductivity and Electromagnetic Devices (ASEMD);2023-10-27

3. A three-level converter for supercapacitor in electric vehicles;2022 Research, Invention, and Innovation Congress: Innovative Electricals and Electronics (RI2C);2022-08-04

4. Multi-Port Multi-Directional Converter with Multi-Mode Operation and Leakage Energy Recycling for Green Energy Processing;Energies;2022-08-03

5. Supercapacitors voltage balancing methods: a comprehensive review;2022 IEEE International Conference on Environment and Electrical Engineering and 2022 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe);2022-06-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3