Scale Effect on Producing Gaseous and Liquid Chemical Fuels via CO2 Reduction

Author:

Liu Ya,Lei Dan,Guo Xiaoqi,Ma Tengfei,Wang Feng,Chen YubinORCID

Abstract

Producing chemical fuels from sunlight is a sustainable way to utilize solar energy and reduce carbon emissions. Within the current photovoltaic-electrolysis or photoelectrochemical-based solar fuel generation system, electrochemical CO2 reduction is the key step. Although there has been important progress in developing new materials and devices, scaling up electrochemical CO2 reduction is essential to promote the industrial application of this technology. In this work, we use Ag and In as the representative electrocatalyst for producing gas and liquid products in both small and big electrochemical cells. We find that gas production is blocked more easily than liquid products when scaling up the electrochemical cell. Simulation results show that the generated gas product, CO, forms bubbles on the surface of the electrocatalyst, thus blocking the transport of CO2, while there is no such trouble for producing the liquid product such as formate. This work provides methods for studying the mass transfer of CO, and it is also an important reference for scaling up solar fuel generation devices that are constructed based on electrochemical CO2 reduction.

Funder

National Natural Science Foundation of China

Shaanxi Technical Innovation Guidance Project

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3