Construction of Ovarian Cancer Prognostic Model Based on the Investigation of Ferroptosis-Related lncRNA

Author:

Yang Shaoyi12,Ji Jie12,Wang Meng1,Nie Jinfu1,Wang Shujie1ORCID

Affiliation:

1. Anhui Province Key Laboratory of Medical Physics and Technology, Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China

2. Science Island Branch, Graduate School of University of Science and Technology of China, Hefei 230026, China

Abstract

(1) Background: Ovarian cancer (OV) has the high mortality rate among gynecological cancers worldwide. Inefficient early diagnosis and prognostic prediction of OV leads to poor survival in most patients. OV is associated with ferroptosis, an iron-dependent form of cell death. Ferroptosis, believed to be regulated by long non-coding RNAs (lncRNAs), may have potential applications in anti-cancer treatments. In this study, we aimed to identify ferroptosis-related lncRNA signatures and develop a novel model for predicting OV prognosis. (2) Methods: We downloaded data from The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression, and Gene Expression Omnibus (GEO) databases. Prognostic lncRNAs were screened by least absolute shrinkage and selection operator (LASSO)-Cox regression analysis, and a prognostic model was constructed. The model’s predictive ability was evaluated by Kaplan–Meier (KM) survival analysis and receiver operating characteristic (ROC) curves. The expression levels of these lncRNAs included in the model were examined in normal and OV cell lines using quantitative reverse transcriptase polymerase chain reaction. (3) Results: We constructed an 18 lncRNA prognostic prediction model for OV based on ferroptosis-related lncRNAs from TCGA patient samples. This model was validated using TCGA and GEO patient samples. KM analysis showed that the prognostic model was able to significantly distinguish between high- and low-risk groups, corresponding to worse and better prognoses. Based on the ROC curves, our model shows stronger prediction precision compared with other traditional clinical factors. Immune cell infiltration, immune checkpoint expression levels, and Tumor Immune Dysfunction and Exclusion analyses are also insightful for OV immunotherapy. (4) Conclusions: The prognostic model constructed in this study has potential for improving our understanding of ferroptosis-related lncRNAs and providing a new tool for prognosis and immune response prediction in patients with OV.

Funder

CASHIPS Director’s Fund

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3