HAMP as a Potential Diagnostic, PD-(L)1 Immunotherapy Sensitivity and Prognostic Biomarker in Hepatocellular Carcinoma

Author:

Chen Guoming1,Zhang Cheng1,Li Danyun2,Luo Dongqiang2,Liao Hui3,Huang Peizhen3,Wang Ning1,Feng Yibin1ORCID

Affiliation:

1. School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China

2. The First Clinical School, Guangzhou University of Chinese Medicine, Guangzhou 510405, China

3. The Second Clinical School, Guangzhou University of Chinese Medicine, Guangzhou 510405, China

Abstract

Hepatocellular carcinoma (HCC) remains a global medical problem. Programmed cell death protein 1 (PD-1) is a powerful weapon against many cancers, but it is not sensitive to some patients with HCC. We obtained datasets from the Gene Expression Omnibus (GEO) database on HCC patients and PD-1 immunotherapy to select seven intersecting DEGs. Through Lasso regression, two intersecting genes were acquired as predictors of HCC and PD-1 treatment prognosis, including HAMP and FOS. Logistic regression was performed to build a prediction model. HAMP had a better ability to diagnose HCC and predict PD1 treatment sensitivity. Further, we adapted the support vector machine (SVM) technique using HAMP to predict triple-classified outcomes after PD1 treatment in HCC patients, which had an excellent classification ability. We also performed external validation using TCGA data, which showed that HAMP was elevated in the early stage of HCC. HAMP was positively correlated with the infiltration of 18 major immune cells and the expression of 2 important immune checkpoints, PDCD1 and CTLA4. We discovered a biomarker that can be used for the early diagnosis, prognosis and PD1 immunotherapy efficacy prediction of HCC for the first time and developed a diagnostic model, prognostic model and prediction model of PD1 treatment sensitivity and treatment outcome for HCC patients accordingly.

Funder

Hong Kong Health and Medical Research Fund

RGC General Research Fund

Hong Kong Chinese Medicine Development Fund

Wong’s donation

Gaia Family Trust of New Zealand

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

Reference39 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3