Affiliation:
1. School of Electrical and Computer Engineering, National Technical University of Athens, 9 Iroon Polytechniou St., 15780 Athens, Greece
2. Hellenic Air Force Academy, Dekelia Air Base, Acharnes, 13671 Athens, Greece
Abstract
The accurate “base pairing” in RNA molecules, which leads to the prediction of RNA secondary structures, is crucial in order to explain unknown biological operations. Recently, COVID-19, a widespread disease, has caused many deaths, affecting humanity in an unprecedented way. SARS-CoV-2, a single-stranded RNA virus, has shown the significance of analyzing these molecules and their structures. This paper aims to create a pioneering framework in the direction of predicting specific RNA structures, leveraging syntactic pattern recognition. The proposed framework, Knotify+, addresses the problem of predicting H-type pseudoknots, including bulges and internal loops, by featuring the power of context-free grammar (CFG). We combine the grammar’s advantages with maximum base pairing and minimum free energy to tackle this ambiguous task in a performant way. Specifically, our proposed methodology, Knotify+, outperforms state-of-the-art frameworks with regards to its accuracy in core stems prediction. Additionally, it performs more accurately in small sequences and presents a comparable accuracy rate in larger ones, while it requires a smaller execution time compared to well-known platforms. The Knotify+ source code and implementation details are available as a public repository on GitHub.
Subject
Molecular Biology,Biochemistry
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献