Identification of the Subtypes of Renal Ischemia-Reperfusion Injury Based on Pyroptosis-Related Genes

Author:

Niu Xinhao12,Cheuk Yin Celeste123,Li Xiao45,Rong Ruiming12,Xu Xiaoqing12,Xu Cuidi12,Luo Yongsheng12,Zhang Pingbao12,Guo Jingjing12

Affiliation:

1. Shanghai Key Laboratory of Organ Transplantation, Shanghai 200032, China

2. Department of Urology, Zhongshan Hospital, Fudan University, Shanghai 200032, China

3. Department of Urology, Huashan Hospital, Fudan University, Shanghai 200040, China

4. Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China

5. Shanghai Institute of Cardiovascular Diseases, Shanghai 200032, China

Abstract

Ischemia-reperfusion injury (IRI) often occurs in the process of kidney transplantation, which significantly impacts the subsequent treatment and prognosis of patients. The prognosis of patients with different subtypes of IRI is quite different. Therefore, in this paper, the gene expression data of multiple IRI samples were downloaded from the GEO database, and a double Laplacian orthogonal non-negative matrix factorization (DL-ONMF) algorithm was proposed to classify them. In this algorithm, various regularization constraints are added based on the non-negative matrix factorization algorithm, and the prior information is fused into the algorithm from different perspectives. The connectivity information between different samples and features is added to the algorithm by Laplacian regularization constraints on samples and features. In addition, orthogonality constraints on the basis matrix and coefficient matrix obtained by the algorithm decomposition are added to reduce the influence of redundant samples and redundant features on the results. Based on the DL-ONMF algorithm for clustering, two PRGs-related IRI isoforms were obtained in this paper. The results of immunoassays showed that the immune microenvironment was different among PRGS-related IRI types. Based on the differentially expressed PRGs between subtypes, we used LASSO and SVM-RFE algorithms to construct a diagnostic model related to renal transplantation. ROC analysis showed that the diagnostic model could predict the outcome of renal transplant patients with high accuracy. In conclusion, this paper presents an algorithm, DL-ONMF, which can identify subtypes with different disease characteristics. Comprehensive bioinformatic analysis showed that pyroptosis might affect the outcome of kidney transplantation by participating in the immune response of IRI.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3