Two-Photon Excited Fluorescence of NADH-Alcohol Dehydrogenase Complex in a Mixture with Bacterial Enzymes

Author:

Gorbunova Ioanna A.1,Sasin Maxim E.1,Yachkov Dmitry V.12,Volkov Denis A.1,Vedyaykin Alexei D.2,Nikiforov Andrey A.3ORCID,Vasyutinskii Oleg S.1ORCID

Affiliation:

1. Ioffe Intstitute, St. Petersburg 194021, Russia

2. Institute of Nanobiotechnologies, Peter the Great St. Petersburg Polytechnic University, St. Petersburg 195251, Russia

3. Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia

Abstract

Thorough study of composition and fluorescence properties of a commercial reagent of active equine NAD-dependent alcohol dehydrogenase expressed and purified from E. coli has been carried out. Several experimental methods: spectral- and time-resolved two-photon excited fluorescence, sodium dodecyl sulfate–polyacrylamide gel electrophoresis, fast protein liquid chromatography, and mass spectrometry were used for analysis. The reagent under study was found to contain also a number of natural fluorophores: free NAD(P)H, NADH-alcohol dehydrogenase, NADPH-isocitrate dehydrogenase, and pyridoxal 5-phosphate—serine hydroxymethyltransferase complexes. The results obtained demonstrated the potential and limitations of popular optical methods as FLIM for separation of fluorescence signals from free and protein-bound forms of NADH, NADPH, and FAD that are essential coenzymes in redox reactions in all living cells. In particular, NADH-alcohol dehydrogenase and NADPH-isocitrate dehydrogenase complexes could not be optically separated in our experimental conditions although fast protein liquid chromatography and mass spectrometry analysis undoubtedly indicated the presence of both enzymes in the molecular sample used. Also, the results of fluorescence, fast protein liquid chromatography, and mass spectrometry analysis revealed a significant contribution of the enzyme-bound coenzyme pyridoxal 5-phosphate to the fluorescence signal that could be separated from enzyme-bound NADH by using bandpass filters, but could effectively mask contribution from enzyme-bound FAD because the fluorescence spectra of the species practically overlapped. It was shown that enzyme-bound pyridoxal 5-phosphate fluorescence can be separated from enzyme-bound NAD(P)H and FAD through analysis of short fluorescence decay times of about tens of picoseconds. However, this analysis was found to be effective only at relatively high number of peak photon counts in recorded fluorescence signals. The results obtained in this study can be used for interpretation of fluorescence signals from a mixture of enzyme-bound fluorophores and should be taken into consideration when determining the intracellular NADH/FAD ratio using FLIM.

Funder

Russian Science Foundation

Ministry of Science and Higher Education of the Russian Federation, program ‘Priority 2030’

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3