Identification of an Autophagy-Related Signature for Prognosis and Immunotherapy Response Prediction in Ovarian Cancer

Author:

Ding Jinye1ORCID,Wang Chunyan1,Sun Yaoqi1,Guo Jing12,Liu Shupeng1ORCID,Cheng Zhongping12

Affiliation:

1. Department of Obstetrics and Gynecology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, Shanghai 200072, China

2. Institute of Gynecological Minimally Invasive Medicine, Tongji University School of Medicine, Shanghai 200072, China

Abstract

Background: Ovarian cancer (OC) is one of the most malignant tumors in the female reproductive system, with a poor prognosis. Various responses to treatments including chemotherapy and immunotherapy are observed among patients due to their individual characteristics. Applicable prognostic markers could make it easier to refine risk stratification for OC patients. Autophagy is closely implicated in the occurrence and development of tumors, including OC. Whether autophagy -related genes can be used as prognostic markers for OC patients remains unclear. Methods: The gene transcriptome data of 374 OC patients were downloaded from The Cancer Genome Atlas (TCGA) database. The correlation between the autophagy levels and outcomes of OC patients was identified through the single sample gene set enrichment analysis (ssGSEA). Recognized molecular markers of autophagy in different clinical specimens were detected by immunohistochemistry (IHC) assay. The gene set enrichment analysis (GSEA), ESTIMATE, and CIBERSORT analysis were applied to explore the correlation of autophagy with the tumor immune microenvironment (TIME). Single-cell RNA-sequencing (scRNA-seq) data from seven OC patients were included for characterizing cell-cell interaction patterns of autophagy-high or low tumor cells. Machine learning, Stepwise Cox regression and LASSO-Cox analysis were used to screen autophagy hub genes, which were used to establish an autophagy-related signature for prognosis evaluation. Four tumor immunotherapy cohorts were obtained from the GEO (Gene Expression Omnibus) database and the literature for autophagy risk score validation. Results: The autophagy levels were closely related to the prognosis of the OC patients. Additionally, the autophagy levels were correlated with TIME status including immune score, and immune-cell infiltration. The scRNA-seq analysis found that tumor cells with high or low autophagy levels had different interactions with immune cells, especially macrophages. Eight autophagy-hub genes (ZFYVE1, AMBRA1, LAMP2, TRAF6, PDPK1, ATG2B, DAPK1 and TP53INP2) were screened for an autophagy-related signature. According to this signature, higher risk score was correlated with poor prognosis and better immunotherapy response in the OC patients. Conclusions: The autophagy-related signature is applicable to predict the prognosis and immune checkpoint inhibitors (ICIs) therapy efficiency in OC patients. It is possible to identify OC patients who will respond to ICIs therapy and have a favorable prognosis, although more verification is needed.

Funder

Fundamental Research Funds for the Central Universities

Shanghai Tenth People’s Hospital

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Molecular Biology,Biochemistry

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3