Efficient Integrity-Tree Structure for Convolutional Neural Networks through Frequent Counter Overflow Prevention in Secure Memories

Author:

Kim JesungORCID,Lee WonyoungORCID,Hong JeongkyuORCID,Kim SoontaeORCID

Abstract

Advancements in convolutional neural network (CNN) have resulted in remarkable success in various computing fields. However, the need to protect data against external security attacks has become increasingly important because inference process in CNNs exploit sensitive data. Secure Memory is a hardware-based protection technique that can protect the sensitive data of CNNs. However, naively applying secure memory to a CNN application causes significant performance and energy overhead. Furthermore, ensuring secure memory becomes more difficult in environments that require area efficiency and low-power execution, such as the Internet of Things (IoT). In this paper, we investigated memory access patterns for CNN workloads and analyzed their effects on secure memory performance. According to our observations, most CNN workloads intensively write to narrow memory regions, which can cause a considerable number of counter overflows. On average, 87.6% of total writes occur in 6.8% of the allocated memory space; in the extreme case, 93.9% of total writes occur in 1.4% of the allocated memory space. Based on our observations, we propose an efficient integrity-tree structure called Countermark-tree that is suitable for CNN workloads. The proposed technique reduces overall energy consumption by 48%, shows a performance improvement of 11.2% compared to VAULT-128, and requires a similar integrity-tree size to VAULT-64, a state-of-the-art technique.

Funder

National Research Foundation of Korea

Korea government

Yeungnam University Research

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3