The Value of Energy Storage in Facilitating Renewables: A Northeast Area Analysis

Author:

Zhu Meng1,Sun Yong1,Lu Yu1,Sang Linwei2,Yi Zhongkai2,Xu Ying2ORCID,Ma Kerui1

Affiliation:

1. Economic and Technical Research Institute, State Grid Jilin Electric Power Co., Ltd., Changchun 130022, China

2. School of Electrical Engineering & Automation, Harbin Institute of Technology, Harbin 150006, China

Abstract

The cross-regional and large-scale transmission of new energy power is an inevitable requirement to address the counter-distributed characteristics of wind and solar resources and load centers, as well as to achieve carbon neutrality. However, the inherent stochastic, intermittent, and fluctuating nature of wind and solar power poses challenges for the stable bundled dispatch of new energy. Leveraging the regulation flexibility of energy storage offers a potential solution to mitigate new energy fluctuations, enhance the flexibility of the hybrid energy systems, and promote bundled dispatch of new energy for external transmission. This paper takes energy storage as an example and proposes a capacity configuration optimization method for a hybrid energy system. The system is composed of wind power, solar power, and energy storage, denoted by the wind–solar–energy storage hybrid energy systems. The objective is to quantify the support provided by energy storage to bundled dispatch of new energy, namely determining the new energy transmission capacity that can be sustained per unit of energy storage. The results demonstrate that the proposed method effectively improves the bundled dispatch capacity of new energy. Moreover, the obtained configuration results can be tailored based on different wind–solar ratios, allowable fluctuation rates, and transmission channel capacities, rendering the approach highly valuable for engineering practicality.

Funder

Science and Technology Project of State Grid Jilin Electric Power Company Limited

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3