The Influence of Hydraulic Characteristics on Structural Performance in a Pump-Turbine under No-Load Conditions

Author:

Ren Shenming1,Zheng Yuan1,Yuan Cong2,Liu Bin3,Fernandez-Rodriguez Emmanuel4ORCID,Zhang Yuquan1ORCID

Affiliation:

1. College of Energy and Electrical Engineering, Hohai University, Nanjing 211100, China

2. Huaishu New River Management Office of Jiangsu Province, Huaian 223001, China

3. Luoyun Water Conservancy Project Management Divison in Jiangsu Province, Suqian 223800, China

4. Technological Institute of Merida, Technological Avenue, Merida 97118, Mexico

Abstract

The operating state of a pump-turbine unit under no-load conditions is directly related to its safe and stable operation. In order to probe into the influence of hydraulic characteristics on structural performance, a pump-turbine assembled in China is selected for research by using CFD (computational fluid dynamics) and unidirectional FSI (fluid–structure interaction) methods. The vortex distribution and the law of pressure pulsation propagation are analyzed to capture the peculiar flow phenomena. The results show that the vortex distribution in the runner channel appears initially at the suction side of the blades but then propagates toward the pressure side with GVO. This produces rotating stall frequencies (0.7fn) and a combination of the RSI, asymmetry of the water ring in vaneless space, and high-amplitude pressure pulsations in the downstream channel close to the runner inlet and elbow section of the draft tube. This, in turn, is associated with the structural stress of the runner and guide vane. The stress level of the guide vane becomes alleviated under no-load conditions with large GVO, but the stress distribution of the runner is no longer symmetrical, which aligns with the vortex evolution in the runner passage. The stress concentration that develops further along the blade root increases the structural failure, which is also captured and verified as a crack in the prototype runner. The phenomena suggest that the RPT should avoid operating under no-load conditions with large GVO as far as possible. Therefore, in the design or optimization of the pump-turbine unit, the structures of the guide vanes and runner could be treated as a whole to investigate the resulting internal flow and structure characteristics.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3