Synthesis, Characterization, and Performance of Nano-Metal-Oxide (Al2O3) Blended Biochar for the Removal of Iron from Contaminated Water for Enhanced Kinetic and Adsorption Studies

Author:

Khan Aftab Ahmad1ORCID,Iqbal Javed2,Bashir Muhammad Tariq2ORCID,Amin Muhammad Tahir1ORCID,Sikandar Muhammad Ali2ORCID,Rahman Muhammad Muhitur1ORCID,Arifuzzman Md.1ORCID

Affiliation:

1. Department of Civil and Environmental Engineering, College of Engineering, King Faisal University, Al-Ahsa 31982, Saudi Arabia

2. Department of Civil Engineering, CECOS University of IT and Emerging Sciences, Peshawar 5200, Pakistan

Abstract

This paper explored synthesis, characterization, and adsorption modeling for the application of nano-metal-oxide (Al2O3) blended biochar (NMOBC) derived from date palm waste in removing iron (Fe3+) from contaminated water. The pseudo-second-order model provided a goodness-of-fit that was superior to the pseudo-first-order kinetic model based on the value of R2 with all of the initial concentrations. The Elovich kinetic model also presented a good fit, indicating that chemisorption is a predominant mechanism in the adsorption process. The Langmuir, Freundlich, Redlich-Petersons, Temkin, and Sips models provided an exclusive perspective of the adsorption dynamics based on the high value of R2. However, the Sips model suggested the best fit of all of the employed models, with the lowest RMSE value of 0.0239 mg/g and the maximum adsorption capacity of 22.680 mg/g for NMOBC. Both adsorbents were effectively regenerated and reused in multiple cycles, thus leading to sustainable practices. Numerous analytical techniques, including SEM/EDX, FTIR, and BET, were employed in characterizing the structural, morphological, and functional properties of the synthesized NMOBC and BC. Subsequently, it revealed that the adsorption process and the role of various interactions are attributed to surface area, porosity, and ion exchange.

Funder

Deanship of Scientific Research, Vice Presidency for Graduate Studies and Scientific Research at King Faisal University, Al-Ahsa, Saudi Arabia

Publisher

MDPI AG

Subject

Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3