Hierarchical Information Entropy System Model for TWfMS

Author:

Han Qiang,Yang Deren

Abstract

Under the infrastructure of three gradually deepening layers consisting of System, Service and Software, the information entropy of the Trustworthy Workflow Management System (TWfMS) will evolve from being more precise to more undetermined, due to a series of exception event X occurring on certain components (ExCs), along with the life cycle of TWfMS, experienced in its phased original, as-is, to-be, and agile-consistent stages, and recover, more precisely again, by turning back to the original state from the agile-consistent stage, due to its self-autonomous improvement. With a special emphasis on the system layer, to assure the trustworthiness of WfMS, this paper firstly introduces the preliminary knowledge of the hierarchical information entropy model with correlation theories. After illustrating the fundamental principle, the transformation rule is deduced, step by step, followed by a case study, which is conducive to generating discussions and conclusions in the different research areas of TWfMS. Overall, in this paper, we argue that the trustworthiness maintenance of WfMS could be analyzed and computational, through the viewpoint that all the various states of TWfMS can be considered as the transformation between WfMS and its trustworthiness compensate components, whose information entropy fluctuate repeatedly and comply with the law of the dissipative structure system.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference69 articles.

1. On Systems Engineering (Revised Edition), Series of Systems Science and Systems Engineering;Qian,1998

2. Service Computing;Zhang,2005

3. Blockchains for Business Process Management - Challenges and Opportunities

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3