Development and Analysis of a CNN- and Transfer-Learning-Based Classification Model for Automated Dairy Cow Feeding Behavior Recognition from Accelerometer Data

Author:

Bloch Victor1,Frondelius Lilli1,Arcidiacono Claudia2ORCID,Mancino Massimo2,Pastell Matti1ORCID

Affiliation:

1. Natural Resources Institute Luke (Finland), Latokartanonkaari 9, 00790 Helsinki, Finland

2. Department of Agriculture, Food and Environment (Di3A), Building and Land Engineering Section, University of Catania, Via Santa Sofia 100, 95123 Catania, Italy

Abstract

Due to technological developments, wearable sensors for monitoring the behavior of farm animals have become cheaper, have a longer lifespan and are more accessible for small farms and researchers. In addition, advancements in deep machine learning methods provide new opportunities for behavior recognition. However, the combination of the new electronics and algorithms are rarely used in PLF, and their possibilities and limitations are not well-studied. In this study, a CNN-based model for the feeding behavior classification of dairy cows was trained, and the training process was analyzed considering a training dataset and the use of transfer learning. Commercial acceleration measuring tags, which were connected by BLE, were fitted to cow collars in a research barn. Based on a dataset including 33.7 cow × days (21 cows recorded during 1–3 days) of labeled data and an additional free-access dataset with similar acceleration data, a classifier with F1 = 93.9% was developed. The optimal classification window size was 90 s. In addition, the influence of the training dataset size on the classifier accuracy was analyzed for different neural networks using the transfer learning technique. While the size of the training dataset was being increased, the rate of the accuracy improvement decreased. Beginning from a specific point, the use of additional training data can be impractical. A relatively high accuracy was achieved with few training data when the classifier was trained using randomly initialized model weights, and a higher accuracy was achieved when transfer learning was used. These findings can be used for the estimation of the necessary dataset size for training neural network classifiers intended for other environments and conditions.

Funder

ICT-AGRI-2 ERA-NET

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3