Three-Dimensional Measurement of Proximal Humerus Fractures Displacement: A Computerized Analysis

Author:

Ripoll Thomas12,Chelli Mikaël3ORCID,Johnston Tyler12,Chaoui Jean4,Gauci Marc-Olivier12ORCID,Vasseur Heloïse2,Poltaretskyi Sergii4,Boileau Pascal3

Affiliation:

1. Unité de Recherche Clinique (UR2CA), Université de Nice Côté d’Azur, 06000 Nice, France

2. Hôpital Pasteur 2—IULS, 30 Voie Romaine, CÉDEX 1, 06001 Nice, France

3. Institut de Chirurgie Réparatrice—Groupe Kantys, 06004 Nice, France

4. Imascap, 29280 Plouzané, France

Abstract

Neer’s classification for proximal humerus fractures (PHFs) uses 10 mm and 45° thresholds to distinguish displaced fragments. While this system was originally developed referencing 2D X-rays, fracture displacements occur in three dimensions. Our work aimed to develop a standardized and reliable computerized method for measuring PHF 3D spatial displacements. CT scans of 77 PHFs were analyzed. A statistical shape model (SSM) was used to generate the pre-fracture humerus. This predicted proximal humerus was then used as a “layer” to manually reduce fragments to their native positions and quantify translation and rotation in three dimensions. 3D computerized measurements could be calculated for 96% of fractures and revealed that 47% of PHFs were displaced according to Neer’s criteria. Valgus and varus head rotations in the coronal plane were present in 39% and 45% of cases; these were greater than 45° in 8% of cases and were always associated with axial and sagittal rotations. When compared to 3D measurements, 2D methods underestimated the displacement of tuberosity fragments and did not accurately assess rotational displacements. The use of 3D measurements of fracture displacement is feasible with a computerized method and may help further refine PHF analysis and surgical planning.

Publisher

MDPI AG

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3