Compensatory Base Changes in ITS2 Secondary Structure Alignment, Modelling, and Molecular Phylogeny: An Integrated Approach to Improve Species Delimitation in Tulasnella (Basidiomycota)

Author:

Jiménez-Gaona Yuliana1ORCID,Vivanco-Galván Oscar2ORCID,Cruz Darío2ORCID,Armijos-Carrión Angelo3,Suárez Juan Pablo2ORCID

Affiliation:

1. Departamento de Química, Universidad Técnica Particular de Loja (UTPL), San Cayetano Alto s/n, Loja 1101608, Ecuador

2. Departamento de Ciencias Biológicas, Universidad Técnica Particular de Loja (UTPL), San Cayetano Alto s/n, Loja 1101608, Ecuador

3. Department of Biology, Memorial University of Newfoundland, St. John’s, NL A1B 3X9, Canada

Abstract

Background: The delimitation of species of Tulasnella has been extensively studied, mainly at the morphological (sexual and asexual states) and molecular levels—showing ambiguity between them. An integrative species concept that includes characteristics such as molecular, ecology, morphology, and other information is crucial for species delimitation in complex groups such as Tulasnella. Objectives: The aim of this study is to test evolutionary relationships using a combination of alignment-based and alignment-free distance matrices as an alternative molecular tool to traditional methods, and to consider the secondary structures and CBCs from ITS2 (internal transcribed spacer) sequences for species delimitation in Tulasnella. Methodology: Three phylogenetic approaches were plotted: (i) alignment-based, (ii) alignment-free, and (iii) a combination of both distance matrices using the DISTATIS and pvclust libraries from an R package. Finally, the secondary structure consensus was modeled by Mfold, and a CBC analysis was obtained to complement the species delimitation using 4Sale. Results and Conclusions: The phylogenetic tree results showed delimited monophyletic clades in Tulasnella spp., where all 142 Tulasnella sequences were divided into two main clades A and B and assigned to seven species (T. asymmetrica, T. andina, T. eichleriana ECU6, T. eichleriana ECU4 T. pinicola, T. violea), supported by bootstrap values from 72% to 100%. From the 2D secondary structure alignment, three types of consensus models with helices and loops were obtained. Thus, T. albida belongs to type I; T. eichleriana, T. tomaculum, and T. violea belong to type II; and T. asymmetrica, T. andina, T. pinicola, and T. spp. (GER) belong to type III; each type contains four to six domains, with nine CBCs among these that corroborate different species.

Funder

Universidad Técnica Particular de Loja

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3