The Intricate Connection between Bacterial α-Diversity and Fungal Engraftment in the Human Gut of Healthy and Impaired Individuals as Studied Using the In Vitro SHIME® Model

Author:

Marsaux Benoît12ORCID,Moens Frédéric1,Marzorati Massimo12,Van de Wiele Tom12

Affiliation:

1. ProDigest B.V., Technologiepark-Zwijnaarde 82, 9052 Ghent, Belgium

2. Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000 Ghent, Belgium

Abstract

From the estimated 2.2 to 3.8 million fungal species existing on Earth, only a minor fraction actively colonizes the human gastrointestinal tract. In fact, these fungi only represent 0.1% of the gastrointestinal biosphere. Despite their low abundance, fungi play dual roles in human health—both beneficial and detrimental. Fungal infections are often associated with bacterial dysbiosis following antibiotic use, yet our understanding of gut fungi–bacteria interactions remains limited. Here, we used the SHIME® gut model to explore the colonization of human fecal-derived fungi across gastrointestinal compartments. We accounted for the high inter-individual microbial diversity by using fecal samples from healthy adults, healthy babies, and Crohn’s disease patients. Using quantitative Polymerase Chain Reaction and targeted next-generation sequencing, we demonstrated that SHIME®-colonized mycobiomes change upon loss of transient colonizers. In addition, SHIME® reactors from Crohn’s disease patients contained comparable bacterial levels as healthy adults but higher fungal concentrations, indicating unpredictable correlations between fungal levels and total bacterial counts. Our findings rather link higher bacterial α-diversity to limited fungal growth, tied to colonization resistance. Hence, while healthy individuals had fewer fungi engrafting the colonic reactors, low α-diversity in impaired (Crohn’s disease patients) or immature (babies) microbiota was associated with greater fungal abundance. To validate, antibiotic-treated healthy colonic microbiomes demonstrated increased fungal colonization susceptibility, and bacterial taxa that were negatively correlated with fungal expansion were identified. In summary, fungal colonization varied individually and transiently, and bacterial resistance to fungal overgrowth was more related with specific bacterial genera than total bacterial load. This study sheds light on fungal–bacterial dynamics in the human gut.

Funder

Marie Sklodowska-Curie

UGent special research fund

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

Reference80 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3