Estimating the Climate Niche of Sclerotinia sclerotiorum Using Maximum Entropy Modeling

Author:

Cohen Susan D.1ORCID

Affiliation:

1. Center for Regulatory Research, LLC, 2355 Highway 36 West, Suite #400, Minnesota, MN 55113, USA

Abstract

Sclerotinia sclerotiorum, a fungal pathogen, causes world-wide crop losses and additional disease management strategies are needed. Modeling the climate niche of this fungus may offer a tool for the selection of biological control organisms and cultural methods of control. Maxent, a modeling technique, was used to characterize the climate niche for the fungus. The technique requires disease occurrence data, bioclimatic data layers, and geospatial analysis. A cross-correlation was performed with ArcGIS 10.8.1, to reduce nineteen bioclimatic variables (WorldClim) to nine variables. The model results were evaluated by AUC (area under the curve). A final model was created with the random seed procedure of Maxent and gave an average AUC of 0.935 with an AUC difference of −0.008. The most critical variables included annual precipitation (importance: 14.1%) with a range of 450 mm to 2500 mm and the mean temperature of the coldest quarter (importance: 55.6%) with a range of −16 °C to 24 °C, which contributed the most to the final model. A habitat suitability map was generated in ArcGIS 10.8.1 from the final Maxent model. The final model was validated by comparing results with another occurrence dataset. A Z-Score statistical test confirmed no significant differences between the two datasets for all suitability areas.

Publisher

MDPI AG

Subject

Plant Science,Ecology, Evolution, Behavior and Systematics,Microbiology (medical)

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3