Multi-Modality Image Fusion and Object Detection Based on Semantic Information

Author:

Liu Yong1,Zhou Xin2,Zhong Wei2

Affiliation:

1. School of Software Technology, Dalian University of Technology, Dalian 116620, China

2. International School of Information Science & Engineering, Dalian University of Technology, Dalian 116620, China

Abstract

Infrared and visible image fusion (IVIF) aims to provide informative images by combining complementary information from different sensors. Existing IVIF methods based on deep learning focus on strengthening the network with increasing depth but often ignore the importance of transmission characteristics, resulting in the degradation of important information. In addition, while many methods use various loss functions or fusion rules to retain complementary features of both modes, the fusion results often retain redundant or even invalid information.In order to accurately extract the effective information from both infrared images and visible light images without omission or redundancy, and to better serve downstream tasks such as target detection with the fused image, we propose a multi-level structure search attention fusion network based on semantic information guidance, which realizes the fusion of infrared and visible images in an end-to-end way. Our network has two main contributions: the use of neural architecture search (NAS) and the newly designed multilevel adaptive attention module (MAAB). These methods enable our network to retain the typical characteristics of the two modes while removing useless information for the detection task in the fusion results. In addition, our loss function and joint training method can establish a reliable relationship between the fusion network and subsequent detection tasks. Extensive experiments on the new dataset (M3FD) show that our fusion method has achieved advanced performance in both subjective and objective evaluations, and the mAP in the object detection task is improved by 0.5% compared to the second-best method (FusionGAN).

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Physics and Astronomy

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. An Improved Hybrid Model for Target Detection;2023 International Conference on Emerging Techniques in Computational Intelligence (ICETCI);2023-09-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3