Artificial Intelligence-Based Detection of Human Embryo Components for Assisted Reproduction by In Vitro Fertilization

Author:

Mushtaq Abeer,Mumtaz Maria,Raza Ali,Salem NemaORCID,Yasir Muhammad NaveedORCID

Abstract

Assisted reproductive technology is helping humans by addressing infertility using different medical procedures that help in a successful pregnancy. In vitro fertilization (IVF) is one of those assisted reproduction methods in which the sperm and eggs are combined outside the human body in a specialized environment and kept for growth. Assisted reproductive technology is helping humans by addressing infertility using different medical procedures that help in a successful pregnancy. The morphology of the embryological components is highly related to the success of the assisted reproduction procedure. In approximately 3–5 days, the embryo transforms into the blastocyst. To prevent the multiple-birth risk and to increase the chance of pregnancy the embryologist manually analyzes the blastocyst components and selects valuable embryos to transfer to the women’s uterus. The manual microscopic analysis of blastocyst components, such as trophectoderm, zona pellucida, blastocoel, and inner cell mass, is time-consuming and requires keen expertise to select a viable embryo. Artificial intelligence is easing medical procedures by the successful implementation of deep learning algorithms that mimic the medical doctor’s knowledge to provide a better diagnostic procedure that helps in reducing the diagnostic burden. The deep learning-based automatic detection of these blastocyst components can help to analyze the morphological properties to select viable embryos. This research presents a deep learning-based embryo component segmentation network (ECS-Net) that accurately detects trophectoderm, zona pellucida, blastocoel, and inner cell mass for embryological analysis. The proposed method (ECS-Net) is based on a shallow deep segmentation network that uses two separate streams produced by a base convolutional block and a depth-wise separable convolutional block. Both streams are densely concatenated in combination with two dense skip paths to produce powerful features before and after upsampling. The proposed ECS-Net is evaluated on a publicly available microscopic blastocyst image dataset, the experimental segmentation results confirm the efficacy of the proposed method. The proposed ECS-Net is providing a mean Jaccard Index (Mean JI) of 85.93% for embryological analysis.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3