A Review on Rainfall Measurement Based on Commercial Microwave Links in Wireless Cellular Networks

Author:

Lian BinORCID,Wei ZhongchengORCID,Sun XiangORCID,Li Zhihua,Zhao JijunORCID

Abstract

As one of the most critical elements in the hydrological cycle, real-time and accurate rainfall measurement is of great significance to flood and drought disaster risk assessment and early warning. Using commercial microwave links (CMLs) to conduct rainfall measure is a promising solution due to the advantages of high spatial resolution, low implementation cost, near-surface measurement, and so on. However, because of the temporal and spatial dynamics of rainfall and the atmospheric influence, it is necessary to go through complicated signal processing steps from signal attenuation analysis of a CML to rainfall map. This article first introduces the basic principle and the revolution of CML-based rainfall measurement. Then, the article illustrates different steps of signal process in CML-based rainfall measurement, reviewing the state of the art solutions in each step. In addition, uncertainties and errors involved in each step of signal process as well as their impacts on the accuracy of rainfall measurement are analyzed. Moreover, the article also discusses how machine learning technologies facilitate CML-based rainfall measurement. Additionally, the applications of CML in monitoring phenomena other than rain and the hydrological simulation are summarized. Finally, the challenges and future directions are discussed.

Funder

The Education Department of Hebei Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Enhanced Estimation of Rainfall From Opportunistic Microwave Satellite Signals;IEEE Transactions on Geoscience and Remote Sensing;2024

2. Precipitation Monitoring Using Commercial Microwave Links: Current Status, Challenges and Prospectives;Remote Sensing;2023-10-04

3. Recording Rainfall Intensity: Has an Optimum Method Been Found?;Water;2023-09-27

4. Special Issue “Rain Sensors”;Sensors;2023-08-04

5. A portable RF signal attenuation testbed;2023 12th International Conference on Modern Circuits and Systems Technologies (MOCAST);2023-06-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3