On the Design of an Integrated System for Wave Energy Conversion Purpose with the Reaction Mass on Board

Author:

Wu Jinming,Ni Zhonghua

Abstract

In this paper, we investigate the design of an integrated system consisting of two non-rigidly connected bodies: A floating buoy and an emerged offshore structure. When waves excite the buoy to oscillate, the relative motion between the two bodies are converted to useful energy through a spring damper system, resulting in wave energy being absorbed. The parameter to design includes the mass and underwater shape of the buoy. The spring stiffness of the power take-off (PTO) system is constrained to be non-negative with the concerns of complexity in implementation and system stability. Results suggest that a larger mass of the buoy is advantageous due to smaller optimal spring stiffness and damping coefficient of the PTO system, more absorbed wave power, and less motion amplitude of the two bodies. A favorable underwater shape of the buoy is characterized by large diameter to draft ratio, with the section profile preferring a circle or square rather than an equilateral triangle. Investigations on the designed buoy in irregular waves show that the integrated system presents its peak power absorption within the common range of energy period, and the motion amplitude of the offshore structure is larger than the wave amplitude in a certain range of sea states.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Effect of mooring mode and internal mass block layout on eccentric rotating wave energy converter model;Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy;2022-04-26

2. On Power-Absorption Degrees of Freedom for Point Absorber Wave Energy Converters;Journal of Marine Science and Engineering;2020-09-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3