Fog BEMS: An Agent-Based Hierarchical Fog Layer Architecture for Improving Scalability in a Building Energy Management System

Author:

Na UikyunORCID,Lee Eun-KyuORCID

Abstract

It has been found that a cloud building energy management system (BEMS) alone cannot support increasing numbers of end devices (e.g., energy equipment and IoT devices) and emerging energy services efficiently. To resolve these limitations, this paper proposes Fog BEMS, which applies an emerging fog computing concept to a BEMS. Fog computing places small computing resources (fog nodes) just next to end devices, and these nodes process data in real time and manage local contexts. In this way, the BEMS becomes distributed and scalable. However, existing fog computing models have barely considered scenarios where many end devices and fog nodes are deployed and interconnected. That is, they do not scale up and cannot be applied to scalable applications like BEMS. To solve the problem, this paper (i) designs a fog network where a list of functionally heterogeneous nodes is deployed in a hierarchy for collaboration and (ii) designs an agent-based, modular programming model that eases the development and management of computing services at a fog node. We develop a prototype of a fog node and build a real-world testbed on a campus to demonstrate the feasibility of the proposed system. We also conduct experiments, and results show that Fog BEMS is scalable enough for a node to connect up to 900 devices and that network traffic is reduced by 27.22–97.63%, with varying numbers of end devices.

Funder

National Research Foundation of Korea

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference69 articles.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimisation of Volunteer Node Selection for Scalable and Trustworthy Fog Environments;2023 IEEE International Conference on e-Business Engineering (ICEBE);2023-11-04

2. Decentralized control architecture for multi-authoring microgrids;Computing;2023-07-17

3. An overview on smart buildings;Encyclopedia of Electrical and Electronic Power Engineering;2023

4. Cloud-based wireless sensor network smart power outlet for building energy management system;PROCEEDINGS OF 2ND INTERNATIONAL CONFERENCE ON RENEWABLE ENERGY (I-CoRE 2021);2023

5. Understanding Interdependencies among Fog System Characteristics;2022 IEEE 24th Conference on Business Informatics (CBI);2022-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3