Response of Reeves’s Pheasants Distribution to Human Infrastructure in the Dabie Mountains over the Last 20 Years

Author:

Tian ShanORCID,Xu Jiliang,Li Jianqiang,Zhang Mingxiang,Wang Yong

Abstract

Human infrastructure development drives habitat loss and fragmentation worldwide. In China, over the last 20 years, rapid infrastructure development impacted the habitats of endangered species. To facilitate conservation efforts, studies of how human infrastructure affects the distribution of Reeves’s pheasant (Syrmaticus reevesii), an endangered species by the International Union for Conservation of Nature (IUCN) and a nationally protected species in China, are critically needed. We assessed how the distribution of Reeves’s pheasant was impacted by human infrastructure development over the past 20 years in the Dabie Mountains, the main distribution range of the species. We surveyed Reeves’s pheasants by direct sightings and indirect evidence through line transects which were randomly distributed in the Dabie Mountains from 2001 to 2002 and 2018 to 2019. We evaluated the variation of the roads and buildings in these areas in the last 20 years, and then modeled the relationship of the distribution of this pheasant with the road and building data from 2000 and 2017. Human infrastructure became more extensively distributed throughout the Dabie Mountains during the period, with all lands within 10 km of a road or a building. The distribution of Reeves’s pheasants became closer to the buildings and roads and there was a significantly positive relationship between the occurrence of Reeves’s pheasants and the distance to the nearest buildings and roads in 2018–2019. These results suggest that the increased density of buildings and roads in the Dabie Mountains may have caused negative effects on Reeves’s pheasants.

Funder

National Natural Science Foundation of China

National Key Programme of Research and Development of the Ministry of Science and Technology

Publisher

MDPI AG

Subject

General Veterinary,Animal Science and Zoology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3