Zinc and Paclobutrazol Mediated Regulation of Growth, Upregulating Antioxidant Aptitude and Plant Productivity of Pea Plants under Salinity

Author:

Sofy Mahmoud R.ORCID,Elhindi Khalid M.,Farouk Saad,Alotaibi Majed A.

Abstract

Soil salinity is the main obstacle to worldwide sustainable productivity and food security. Zinc sulfate (Zn) and paclobutrazol (PBZ) as a cost-effective agent, has multiple biochemical functions in plant productivity. Meanwhile, their synergistic effects on inducing salt tolerance are indecisive and not often reported. A pot experiment was done for evaluating the defensive function of Zn (100 mg/L) or PBZ (200 mg/L) on salt (0, 50, 100 mM NaCl) affected pea plant growth, photosynthetic pigment, ions, antioxidant capacity, and yield. Salinity stress significantly reduces all growth and yield attributes of pea plants relative to nonsalinized treatment. This reduction was accompanied by a decline in chlorophyll, nitrogen, phosphorus, and potassium (K+), the ratio between K+ and sodium (Na+), as well as reduced glutathione (GSH) and glutathione reductase (GR). Alternatively, salinity increased Na+, carotenoid (CAR), proline (PRO), ascorbic acid (AsA), superoxide dismutase (SOD), catalase (CAT), and ascorbate peroxidase (APX) over nonsalinized treatment. Foliar spraying with Zn and PBZ under normal condition increased plant growth, nitrogen, phosphorus, potassium, K+/Na+ ratio, CAR, PRO, AsA, GSH, APX, GR, and yield and its quality, meanwhile decreased Na+ over nonsprayed plants. Application of Zn and PBZ counteracted the harmful effects of salinity on pea plants, by upregulating the antioxidant system, ion homeostasis, and improving chlorophyll biosynthesis that induced plant growth and yield components. In conclusion, Zn plus PBZ application at 30 and 45 days from sowing offset the injuries of salinity on pea plant growth and yield by upregulating the antioxidant capacity and increasing photosynthetic pigments.

Funder

Deanship of Scientific Research, King Saud University

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3