Genomic Predictions Using Low-Density SNP Markers, Pedigree and GWAS Information: A Case Study with the Non-Model Species Eucalyptus cladocalyx

Author:

Ballesta Paulina,Bush DavidORCID,Silva Fabyano Fonseca,Mora FreddyORCID

Abstract

High-throughput genotyping techniques have enabled large-scale genomic analysis to precisely predict complex traits in many plant species. However, not all species can be well represented in commercial SNP (single nucleotide polymorphism) arrays. In this study, a high-density SNP array (60 K) developed for commercial Eucalyptus was used to genotype a breeding population of Eucalyptus cladocalyx, yielding only ~3.9 K informative SNPs. Traditional Bayesian genomic models were investigated to predict flowering, stem quality and growth traits by considering the following effects: (i) polygenic background and all informative markers (GS model) and (ii) polygenic background, QTL-genotype effects (determined by GWAS) and SNP markers that were not associated with any trait (GSq model). The estimates of pedigree-based heritability and genomic heritability varied from 0.08 to 0.34 and 0.002 to 0.5, respectively, whereas the predictive ability varied from 0.19 (GS) and 0.45 (GSq). The GSq approach outperformed GS models in terms of predictive ability when the proportion of the variance explained by the significant marker-trait associations was higher than those explained by the polygenic background and non-significant markers. This approach can be particularly useful for plant/tree species poorly represented in the high-density SNP arrays, developed for economically important species, or when high-density marker panels are not available.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3