Development of Embryo Suspensors for Five Genera of Crassulaceae with Special Emphasis on Plasmodesmata Distribution and Ultrastructure

Author:

Kozieradzka-Kiszkurno MałgorzataORCID,Majcher Daria,Brzezicka Emilia,Rojek JoannaORCID,Wróbel-Marek Justyna,Kurczyńska EwaORCID

Abstract

The suspensor in the majority of angiosperms is an evolutionally conserved embryonic structure functioning as a conduit that connects ovule tissues with the embryo proper for nutrients and growth factors flux. This is the first study serving the purpose of investigating the correlation between suspensor types and plasmodesmata (PD), by the ultrastructure of this organ in respect of its full development. The special attention is paid to PD in representatives of Crassulaceae genera: Sedum, Aeonium, Monanthes, Aichryson and Echeveria. The contribution of the suspensor in transporting nutrients to the embryo was confirmed by the basal cell structure of the suspensor which produced, on the micropylar side of all genera investigated, a branched haustorium protruding into the surrounding ovular tissue and with wall ingrowths typically associated with cell transfer. The cytoplasm of the basal cell was rich in endoplasmic reticulum, mitochondria, dictyosomes, specialized plastids, microtubules, microbodies and lipid droplets. The basal cell sustained a symplasmic connection with endosperm and neighboring suspensor cells. Our results indicated the dependence of PD ultrastructure on the type of suspensor development: (i) simple PD are assigned to an uniseriate filamentous suspensor and (ii) PD with an electron-dense material are formed in a multiseriate suspensor. The occurrence of only one or both types of PD seems to be specific for the species but not for the genus. Indeed, in the two tested species of Sedum (with the distinct uniseriate/multiseriate suspensors), a diversity in the structure of PD depends on the developmental pattern of the suspensor. In all other genera (with the multiseriate type of development of the suspensor), the one type of electron-dense PD was observed.

Funder

Narodowe Centrum Nauki

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3