Isolation and Screening of Extracellular PGPR from the Rhizosphere of Tomato Plants after Long-Term Reduced Tillage and Cover Crops

Author:

Guerrieri Maria Chiara,Fanfoni Elisabetta,Fiorini Andrea,Trevisan Marco,Puglisi EdoardoORCID

Abstract

Plant growth promoting rhizobacteria provide an innovative solution to address challenges in sustainable agro-ecosystems, improving plant growth as well as acting as agents of biocontrol. In this study autochthonous bacteria were isolated from the rhizosphere of processing tomato plants (Solanum lycopersicum L.) cultivated with conservation agriculture practices (i.e., reduced tillage and cover crops), and evaluated for both growth-promoting activities (PGPAs), and antagonistic potential against the phytopathogenic pest Sclerotinia sclerotiorum. Considering the several activities of PGPR, we decided to structure the screening with a hierarchic approach, starting from testing the capability of fixing nitrogen. The obtained bacteria were processed through the molecular typing technique rep-PCR (Repetitive Extragenic Palindromic) in order to discriminate microbial strains with the same profiles, and identified via 16S rDNA sequencing. Thirty-eight selected isolates were screened in vitro for different activities related to plant nutrition and plant growth regulation as well as for antifungal traits. Isolated bacteria were found to exhibit different efficiencies in indoleacetic acid production and siderophore production, phosphate solubilization and biocontrol activity against the widespread soil-borne plant pathogen S. sclerotiorum. All the 38 bacterial isolates showed at least one property tested. With a view to detect the suitable candidates to be developed as biofertilizers, the selected isolates were ranked by their potential ability to function as PGPR. Thus, consortium of native PGPR bacteria inoculants may represent a suitable solution to address the challenges in sustainable agriculture, to ensure crop yield and quality, lowering the application of chemicals input.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3