Abstract
In the present study, an essential oil was distilled from the leaves of Piper coruscans Kunth, a native Amazonian species belonging to the family Piperaceae and quite common in Ecuador. The chemical analysis was performed by GC-MS (qualitative) and GC-FID (quantitative), on polar and non-polar columns, detecting a total of 58 compounds of which 52 were identified. All the identified compounds were quantified. The essential oil was mainly constituted of sesquiterpenes (54.1–55.0%) and oxygenated sesquiterpenoids (32.5–33.6%), the major constituents being: (E)-β-caryophyllene (24.1–25.0%), α-humulene (11.6–12.0%), caryophyllene oxide (9.3–10.9%), linalool (4.5–5.2%), humulene epoxide II (3.6–4.1%), (E)-nerolidol (3.7–4.0%), α-copaene (3.7–3.9%), α-muurolol (3.4–3.7%), α-selinene (3.4–3.5%), β-selinene (3.1–3.3%), and one undetermined oxygenated sesquiterpenoid (3.1–3.3%). The aqueous phase (hydrolate) of the distillation process was also submitted to chemical analysis, showing linalool as the main organic compound in solution, with a concentration of 12.3–15.7 mg/100 mL. The essential oil was than analyzed for the enantiomeric distribution of its monoterpene constituents, affording the following enantiomeric excesses in two β-cyclodextrin-based enantioselective columns: (1S,5S)-(-)-α-pinene (60.0–69.6%), (1S,5S)-(-)-β-pinene (5.2–7.2%), (R)-(-)-α-phellandrene (72.5–78.2%), (R)-(+)-limonene (28.6%) and (R)-(-)-linalool (1.8–3.1%).
Subject
Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics