Abstract
The inhibition of acetolactate synthase (ALS; EC 2.2.1.6), an enzyme located in the biosynthetic pathway of branched-chain amino acids, is the target site of the herbicide imazamox. One of the physiological effects triggered after ALS inhibition is the induction of aerobic ethanol fermentation. The objective of this study was to unravel if fermentation induction is related to the toxicity of the herbicide or if it is a plant defense mechanism. Pea plants were exposed to two different times of hypoxia before herbicide application in order to induce the ethanol fermentation pathway, and the physiological response after herbicide application was evaluated at the level of carbohydrates and amino acid profile. The effects of the herbicide on total soluble sugars and starch accumulation, and changes in specific amino acids (branched-chain, amide, and acidic) were attenuated if plants were subjected to hypoxia before herbicide application. These results suggest that fermentation is a plant defense mechanism that decreases the herbicidal effect.
Subject
Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics
Reference46 articles.
1. Biosynthesis of valine, leucine and isoleucine;Singh,1999
2. Herbicide discovery in light of rapidly spreading resistance and ever-increasing regulatory hurdles
3. Structure and mechanism of inhibition of plant acetohydroxyacid synthase
4. Inhibition of valine, leucine and isoleucine biosynthesis;Wittenbach,1999
5. The inhibition of amino acid biosynthesis;Cobb,2010
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献