Using Light Quality for Growth Control of Cucumber Seedlings in Closed-Type Plant Production System

Author:

Jeong Hyeon Woo,Lee Hye Ri,Kim Hyeon Min,Kim Hye Min,Hwang Hee Sung,Hwang Seung Jae

Abstract

During seedling production, growth control of seedlings is an important problem because the overgrowth of seedlings causes a decrease of seedling quality and has disadvantages after transplanting. In this study, we aim to evaluate the possibility of replacing chemical plant growth regulators using light quality in a closed-type plant production system (CPPS) for cucumber seedling production. We used various light treatments, such as monochromatic or combined red (R) and blue (B), and combined R and B with UV-A or Far-red (Fr) light, to compare with a chemical plant growth regulator conventionally using in nursery farms. The combined R and B treatment decreased stem elongation and increased dry matter and compactness. UV-A treatment increased compactness but did not significantly affect the stem elongation or dry matter. Fr increased stem elongation and stem diameter and decreased compactness and dry matter. In leaf growth, combined R and B treatments and UV-A treatments increased leaf area, specific leaf weight, and SPAD value, and decreased leaf shape index. Fr treatments increased leaf area and leaf shape index and decreased specific leaf weight (SLW) and SPAD values. Cucumber seedlings have many different morphological changes, and R5B5 light quality was more effective in growth control due to higher compactness than chemical plant growth regulators. Also, R5B5 light quality has increased seedling quality, such as dry matter and SLW compared with fluorescent lamps. Thus, the use of light quality is a possible alternative to a chemical plant growth regulator.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3