Optimization of Artificial Light for Spinach Growth in Plant Factory Based on Orthogonal Test

Author:

Zou Tengyue,Huang Chuanhui,Wu Pengfei,Ge Long,Xu Yong

Abstract

Artificial LED source provides the possibility to regulate the lighting environment in plant factorys that use limited space to plant, aiming at high throughput and good quality. However, different parameters of light intensity, quality, and photoperiod will influence the growth and accumulation of bio-compounds in plants. In order to find the optimal setting of LED light for spinach planting, four group experiments were designed using the orthogonal testing method. According to the experimental results, for growth indexes including fresh weight, dry weight, root length and so on, photoperiod is the most influential factor, light intensity is the second, and light quality is the least. The best light mode (R:B = 4:1, photosynthetic photon flux density (PPFD) = 100 μmol∙m−2∙s−1 and 13/11 h) among all eight possible combinations in the range was also determined. Furthermore, for quality indexes, including the soluble sugar content, protein content and so on, a new scoring method was introduced to make a comprehensive score for evaluating. Then, the light combination (R:B = 4:1, PPFD = 150 μmol∙m−2∙s−1 and 9/15 h) in the range was found as the optimal scheme for spinach quality under those parameters. As there is trade-off between the optimal light parameters for growth and quality, it is necessary to achieve a balance between yield and quality of the plant during production. If farmers want to harvest spinach with larger leaf area and higher yield, they need to pay attention to the adjustment of the photoperiod and use a lower light intensity and a longer lighting time. If they do not mind the yield of the vegetable but want to improve the taste and nutrition of spinach products, they should pay more attention to the light intensity and use a higher light intensity and a shorter lighting time.

Funder

National Natural Science Foundation of China

Natural Science Foundation of Fujian Province

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3