Microbial Consortium of PGPR, Rhizobia and Arbuscular Mycorrhizal Fungus Makes Pea Mutant SGECdt Comparable with Indian Mustard in Cadmium Tolerance and Accumulation

Author:

Belimov Andrey A.,Shaposhnikov Alexander I.,Azarova Tatiana S.,Makarova Natalia M.,Safronova Vera I.,Litvinskiy Vladimir A.,Nosikov Vladimir V.,Zavalin Aleksey A.,Tikhonovich Igor A.

Abstract

Cadmium (Cd) is one of the most widespread and toxic soil pollutants that inhibits plant growth and microbial activity. Polluted soils can be remediated using plants that either accumulate metals (phytoextraction) or convert them to biologically inaccessible forms (phytostabilization). The phytoremediation potential of a symbiotic system comprising the Cd-tolerant pea (Pisum sativum L.) mutant SGECdt and selected Cd-tolerant microorganisms, such as plant growth-promoting rhizobacterium Variovorax paradoxus 5C-2, nodule bacterium Rhizobium leguminosarum bv. viciae RCAM1066, and arbuscular mycorrhizal fungus Glomus sp. 1Fo, was evaluated in comparison with wild-type pea SGE and the Cd-accumulating plant Indian mustard (Brassica juncea L. Czern.) VIR263. Plants were grown in pots in sterilized uncontaminated or Cd-supplemented (15 mg Cd kg−1) soil and inoculated or not with the microbial consortium. Cadmium significantly inhibited growth of uninoculated and particularly inoculated SGE plants, but had no effect on SGECdt and decreased shoot biomass of B. juncea. Inoculation with the microbial consortium more than doubled pea biomass (both genotypes) irrespective of Cd contamination, but had little effect on B. juncea biomass. Cadmium decreased nodule number and acetylene reduction activity of SGE by 5.6 and 10.8 times, whereas this decrease in SGECdt was 2.1 and 2.8 times only, and the frequency of mycorrhizal structures decreased only in SGE roots. Inoculation decreased shoot Cd concentration and increased seed Cd concentration of both pea genotypes, but had little effect on Cd concentration of B. juncea. Inoculation also significantly increased concentration and/or accumulation of nutrients (Ca, Fe, K, Mg, Mn, N, P, S, and Zn) by Cd-treated pea plants, particularly by the SGECdt mutant. Shoot Cd concentration of SGECdt was twice that of SGE, and the inoculated SGECdt had approximately similar Cd accumulation capacity as compared with B. juncea. Thus, plant–microbe systems based on Cd-tolerant micro-symbionts and plant genotypes offer considerable opportunities to increase plant HM tolerance and accumulation.

Funder

Ministry of Science and Higher Education of the Russian Federation

Russian Science Foundation

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Reference73 articles.

1. Tolerance and accumulation of heavy metals by Brassicaceae species grown in contaminated soils from Mediterranean regions of Spain

2. Field crops for phytoremediation of metal-contaminated land. A review

3. Roles of Brassicaceae in Phytoremediation of Metals and Metalloids

4. Different characteristics of roots in the cadmium-tolerance and Cd-binding complex formation between mono- and dicotyledonous plants

5. Assessment of Heavy Metal Accumulation and Performance of Some Physiological Parameters in Zea Mays L. and Vicia Faba L. Grown on Soil Amended by Sewage Sludge Resulting from Sewage Water Treatment in the State of Qatar;Mazen;Qatar Univ. Sci. J.,1995

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3