Complete Chloroplast Genomes of Three Medicinal Alpinia Species: Genome Organization, Comparative Analyses and Phylogenetic Relationships in Family Zingiberaceae

Author:

Li Dong-Mei,Zhu Gen-Fa,Xu Ye-Chun,Ye Yuan-Jun,Liu Jin-Mei

Abstract

Alpinia katsumadai (A. katsumadai), Alpinia oxyphylla (A. oxyphylla) and Alpinia pumila (A. pumila), which belong to the family Zingiberaceae, exhibit multiple medicinal properties. The chloroplast genome of a non-model plant provides valuable information for species identification and phylogenetic analysis. Here, we sequenced three complete chloroplast genomes of A. katsumadai, A. oxyphylla sampled from Guangdong and A. pumila, and analyzed the published chloroplast genomes of Alpinia zerumbet (A. zerumbet) and A. oxyphylla sampled from Hainan to retrieve useful chloroplast molecular resources for Alpinia. The five Alpinia chloroplast genomes possessed typical quadripartite structures comprising of a large single copy (LSC, 87,248–87,667 bp), a small single copy (SSC, 15,306–18,295 bp) and a pair of inverted repeats (IR, 26,917–29,707 bp). They had similar gene contents, gene orders and GC contents, but were slightly different in the numbers of small sequence repeats (SSRs) and long repeats. Interestingly, fifteen highly divergent regions (rpl36, ycf1, rps15, rpl22, infA, psbT-psbN, accD-psaI, petD-rpoA, psaC-ndhE, ccsA-ndhD, ndhF-rpl32, rps11-rpl36, infA-rps8, psbC-psbZ, and rpl32-ccsA), which could be suitable for species identification and phylogenetic studies, were detected in the Alpinia chloroplast genomes. Comparative analyses among the five chloroplast genomes indicated that 1891 mutational events, including 304 single nucleotide polymorphisms (SNPs) and 118 insertion/deletions (indels) between A. pumila and A. katsumadai, 367 SNPs and 122 indels between A. pumila and A. oxyphylla sampled from Guangdong, 331 SNPs and 115 indels between A. pumila and A. zerumbet, 371 SNPs and 120 indels between A. pumila and A. oxyphylla sampled from Hainan, and 20 SNPs and 23 indels between the two accessions of A. oxyphylla, were accurately located. Additionally, phylogenetic relationships based on SNP matrix among 28 whole chloroplast genomes showed that Alpinia was a sister branch to Amomum in the family Zingiberaceae, and that the five Alpinia accessions were divided into three groups, one including A. pumila, another including A. zerumbet and A. katsumadai, and the other including two accessions of A. oxyphylla. In conclusion, the complete chloroplast genomes of the three medicinal Alpinia species in this study provided valuable genomic resources for further phylogeny and species identification in the family Zingiberaceae.

Funder

Guangzhou Municipal Science and Technology Project

National Natural Science Foundation of China

Guangdong Science and Technology Project

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Reference64 articles.

1. Zingiberaceae;Wu,2000

2. The Zingiberaceous Resources in China;Wu,2016

3. Hardy Gingers: Including Hedychium, Roscoea and Zingiber;Branney,2005

4. Zhongguo Yaoyong Jiangke Zhiwu;Zhang,2015

5. Alpinia katsumadai Extracts Inhibit Adhesion and Invasion of Campylobacter jejuni in Animal and Human Foetal Small Intestine Cell Lines

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3