Production of Flavonoids in Callus Cultures of Sophora flavescens Aiton

Author:

Park Ji-Sun,Seong Zuh-KyungORCID,Kim Mi-Sun,Ha Jang-Ho,Moon Ki-Beom,Lee Hyo-Jun,Lee Hyeong-KyuORCID,Jeon Jae-Heung,Park Sang UnORCID,Kim Hyun-Soon

Abstract

Flavonoids, including maackiain (Maac) from Sophora flavescens Aiton roots, have many pharmacological properties, such as antitumor, antimicrobial, and antifungal activities. This research aimed to develop an in vitro plant and callus culture system for S. flavescens for the purpose of generating an alternative production system for enhancing Maac production, as Maac is usually present in very small amounts in S. flavescens’ roots. We arranged the optimal conditions of different tissues of S. flavescens and supplemented the medium with various plant growth regulators (PGRs). The highest induction and proliferation rates of callus was shown in combination treatments of all concentrations of thidiazuron (TDZ) and picloram. In addition, calli induced with leaf explants cultured on 2.0 mg/L picloram and 0.5 mg/L 6-benzyladenine (BA) in Murashige and Skoog (MS) medium had the highest accumulation of the active metabolite Maac. In vitro shoots were regenerated on medium containing combinations of TDZ and α-Naphthalene acetic acid (NAA). A reliable protocol for the mass production of secondary metabolites using a callus culture of S. flavescens was successfully established.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3