Increasing Air Temperatures and Its Effects on Growth and Productivity of Tomato in South Florida

Author:

Ayankojo Ibukun T.ORCID,Morgan Kelly T.ORCID

Abstract

Florida ranks first among US states in fresh-market tomato production with annual production exceeding one-third of the total annual production in the country. Although tomato is a signature crop in Florida, current and future ambient temperatures could impose a major production challenge, especially during the fall growing season. This problem is increasingly becoming an important concern among tomato growers in south Florida, but studies addressing these concerns have not been conducted until now. Therefore, this study was conducted to determine the impacts of the present ambient temperature conditions and planting dates on tomato productivity in south Florida. The study was conducted using crop simulation model CROPGRO-Tomato of DSSAT (Decision Support System for Agricultural Transfer) version 4.7. Five treatments were evaluated, and included AT (simulated treatment using 14 years of actual daily weather conditions at the study location) while other treatments were conducted based on a percentage (−20%, −10%, +10%, +20%) of AT to simulate cooler and warmer temperature regimes. The results suggested that under the current temperature conditions during the fall growing season in south Florida, average tomato yield was up to 29% lower compared to the cooler temperature regimes. Tomato yield further decreased by 52% to 85% at air temperatures above the current condition. Yield reduction under high temperature was primarily due to lower fruit production. Contrary to yield, both tomato biomass accumulation and leaf area index increased with increase in temperature. Results also indicated that due to changes in air temperature pattern, tomato yield increased as planting date increased from July to December. Therefore, planting date modification during the fall season from the current July–September to dates between November and December will reduce the impacts of heat stress and increase tomato productivity in south Florida.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3