Exogenously Applied Ascorbic Acid-Mediated Changes in Osmoprotection and Oxidative Defense System Enhanced Water Stress Tolerance in Different Cultivars of Safflower (Carthamus tinctorious L.)

Author:

Farooq ,Bukhari ,Akram ,Ashraf ,Wijaya ,Alyemeni ,Ahmad

Abstract

The present study was conducted to examine the effect of exogenously applied ascorbic acid (AsA) on osmoprotectants and the oxidative defense system in four cultivars (16171, 16183, 16207 and 16246) of safflower under well-watered and water deficit conditions. Water stress (60% field capacity) significantly decreased the shoot and root fresh and dry weights, shoot and root lengths and chlorophyll contents in all four safflower cultivars, while it increased the leaf free proline, total phenolics, total soluble proteins, hydrogen peroxide content and activities of catalase, superoxide dismutase and peroxidase enzymes. Foliar-applied (100 mg L−1 and 150 mg L−1) ascorbic acid caused a marked improvement in shoot and root fresh and dry weights, plant height, chlorophyll and AsA contents as well as the activity of peroxidase (POD) enzyme particularly under water deficit conditions. It also increased the accumulation of leaf proline, total phenolics, total soluble proteins and glycine betaine (GB) content in all four cultivars. Exogenously applied AsA lowered the contents of MDA and H2O2, and the activities of CAT and SOD enzymes. Overall, exogenously applied AsA had a positive effect on the growth of safflower plants under water deficit conditions which could be related to AsA-induced enhanced osmoprotection and regulation of antioxidant defense system.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3