Germination Data Analysis by Time-to-Event Approaches

Author:

Romano Alessandro,Stevanato PiergiorgioORCID

Abstract

Germination data are analyzed by several methods, which can be mainly classified as germination indexes and traditional regression techniques to fit non-linear parametric functions to the temporal sequence of cumulative germination. However, due to the nature of germination data, often different from other biological data, the abovementioned methods may present some limits, especially when ungerminated seeds are present at the end of an experiment. A class of methods that could allow addressing these issues is represented by the so-called “time-to-event analysis”, better known in other scientific fields as “survival analysis” or “reliability analysis”. There is relatively little literature about the application of these methods to germination data, and some reviews dealt only with parts of the possible approaches such as either non-parametric and semi-parametric or parametric ones. The present study aims to give a contribution to the knowledge about the reliability of these methods by assessing all the main approaches to the same germination data provided by sugar beet (Beta vulgaris L.) seeds cohorts. The results obtained confirmed that although the different approaches present advantages and disadvantages, they could generally represent a valuable tool to analyze germination data providing parameters whose usefulness depends on the purpose of the research.

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

Reference50 articles.

1. Seeds: Ecology, biogeography, and evolution of dormancy and germination;Baskin,2001

2. Modelling seed germination in response to continuous variables: use and limitations of probit analysis and alternative approaches

3. How and why to measure the germination process?

4. Nonlinear Estimation of Growth Curve Models for Germination Data Analysis;Shafii,1991

5. Dynamic Response of Key Germination Traits to NaCl Stress in Sugar Beet Seeds

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3