Comparative Transcriptome Analysis of Halophyte Zoysia macrostachya in Response to Salinity Stress

Author:

Wang RongORCID,Wang Xi,Liu Kuan,Zhang Xue-Jie,Zhang Luo-YanORCID,Fan Shou-JinORCID

Abstract

As one of the most severe environmental stresses, salt stress can cause a series of changes in plants. In salt tolerant plant Zoysia macrostachya, germination, physiology, and genetic variation under salinity have been studied previously, and the morphology and distribution of salt glands have been clarified. However, no study has investigated the transcriptome of such species under salt stress. In the present study, we compared transcriptome of Z. macrostachya under normal conditions and salt stress (300 mmol/L NaCl, 24 h) aimed to identify transcriptome responses and molecular mechanisms under salt stress in Z. macrostachya. A total of 8703 differently expressed genes (DEGs) were identified, including 4903 up-regulated and 3800 down-regulated ones. Moreover, a series of molecular processes were identified by Gene Ontology (GO) analysis, and these processes were suggested to be closely related to salt tolerance in Z. macrostachya. The identified DEGs concentrated on regulating plant growth via plant hormone signal transduction, maintaining ion homeostasis via salt secretion and osmoregulatory substance accumulation and preventing oxidative damage via increasing the activity of ROS (reactive oxygen species) scavenging system. These changes may be the most important responses of Z. macrostachya under salt stress. Some key genes related to salt stress were identified meanwhile. Collectively, our findings provided valuable insights into the molecular mechanisms and genetic underpinnings of salt tolerance in Z. macrostachya.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Plant Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3