Diatom Species Richness in Swiss Springs Increases with Habitat Complexity and Elevation

Author:

Taxböck Lukas,Karger Dirk Nikolaus,Kessler MichaelORCID,Spitale Daniel,Cantonati MarcoORCID

Abstract

Understanding the drivers of species richness gradients is a central challenge of ecological and biodiversity research in freshwater science. Species richness along elevational gradients reveals a great variety of patterns. Here, we investigate elevational changes in species richness and turnover between microhabitats in near-natural spring habitats across Switzerland. Species richness was determined for 175 subsamples from 71 near-natural springs, and Poisson regression was applied between species richness and environmental predictors. Compositional turnover was calculated between the different microhabitats within single springs using the Jaccard index based on observed species and the Chao index based on estimated species numbers. In total, 539 diatom species were identified. Species richness increased monotonically with elevation. Habitat diversity and elevation explaining some of the species richness per site. The Jaccard index for the measured compositional turnover showed a mean similarity of 70% between microhabitats within springs, whereas the Chao index which accounts for sampling artefacts estimated a turnover of only 37%. Thus, the commonly applied method of counting 500 valves led to an undersampling of the rare species and might need to be reconsidered when assessing diatom biodiversity.

Funder

Klaus Hermann Stiftung

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3