CFD Investigations of Transient Cavitation Flows in Pipeline Based on Weakly-Compressible Model

Author:

Tang Xuelin,Duan Xiangyu,Gao Hui,Li Xiaoqin,Shi Xiaoyan

Abstract

In hydraulic systems, transient flow often occurs and may results in cavitation in pipelines. In this paper, the Computational Fluid Dynamics (CFD) method based on the Fluent software was used to investigate the cavitation flow in pipeline; the density-pressure model was incorporated into the continuity equation by using further development of UDF (user defined function), which reflects the variable wave speed of the transient cavitation flow, and the related algorithms were established based on weakly compressible fluid Reynolds Average Navier-Stokes (RANS) techniques. Firstly, the numerical simulations of the transient non-cavitation and cavitation flows caused by the fast closing valve in the reservoir-pipe-valve system were carried out by using the grid slip technique. The simulation results can enrich the flow field information such as velocity, pressure and vapor volume fraction. Through the evolution process of the pressure field, the propagation characteristics of pressure waves can be analyzed qualitatively and quantitatively. Through the evolution process of the velocity field, it can be seen that the velocity distribution in the wall area changes rapidly and has a high gradient, which mainly depends on the viscosity. However, the change of the velocity distribution in the core region is related to the velocity distribution of the history of the past time, which mainly depends on the diffusion. The formation, development and collapse of the cavity can be successfully captured, and it can be clearly and visually observed that the uneven distribution of vapor cavity in the direction of pipe length and pipe diameter, and the vapor cavity move slowly along the top of the pipe wall. Rarefaction wave’s propagation into pressure decreasing region and pressure increasing region can lead to different results of cavitation flow. The accuracy and reliability of the weakly compressible fluid RANS method were verified by comparing the calculated results with the experimental data.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference33 articles.

1. Applied Hydraulic Transients;Chaudhry,2014

2. Numerical Comparison of Pipe‐Column‐Separation Models

3. Pipeline Column Separation Flow Regimes

4. Universal Weighting Function in Modeling Transient Cavitating Pipe Flow;Urbanowicz;J. Theor. Appl. Mech.,2012

5. Experimental and numerical study on transient air–water mixing flows in viscoelastic pipes

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3